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Abstract

This paper examines the performance of simple learning rules in a complex adaptive system

based on a coordination problem modeled on the El Farol problem. The key features of the El

Farol problem are that it typically involves a medium number of agents and that agents' pay-

off functions have a discontinuous response to increased congestion. First we consider a single

adaptive agent facing a stationary environment. We demonstrate that the simple learning

rules proposed by Roth and Er'ev can be extremely sensitive to small changes in the initial

conditions and that events early in a simulation can affect the performance of the rule over

a relatively long time horizon. In contrast, a reinforcement learning rule based on standard

practice in the computer science literature converges rapidly and robustly. The situation is

reversed when multiple adaptive agents interact: the RE algorithms often converge rapidly

to a stable average aggregate attendance despite the slow and erratic behavior of individual

learners, while the CS based learners frequently over-attend in the early and intermediate

terms. The symmetric mixed strategy equilibria is unstable: all three learning rules ul-

timately tend towards pure strategies or stabilize in the medium term at non-equilibrium

probabilities of attendance. The brittleness of the algorithms in different contexts emphasize

the importance of thorough and thoughtful examination of simulation-based results.



1 Introduction

Whett small nttmbers of agents interact we expect that they will behave strategically and

anticipate the behavior of other agents. When large numbers of agents interact we often

assume that an individual's action has a neglible effect on the behavior of the system and

that agents do not engage in strategic behavior. Exploring the intermediate case where

the interactions of a medium-sized population of agents create an endogenously evolving

environment is one of the goals of complex systems theory.

This paper utilizes the El Farol problem proposed by W. Brian Arthur [1] to explore the

effects of endogeneity in a complex adaptive system where agents use simple reinforcement

learning rules. We begin by examining the performance of three different learning rules when

a single learning'agent faces a stationary stochastic environment, i. e. when all other agents

choose their actions based on independent draws from a fixed probability distribution. We

demonstrate that details of the problem specification which do not affect the Nash equilibria

of the underlying game such as the initial conditions of the adaptive agents' states and

the scaling of rewards can dramatically affect the performance of the learning rules. We

then analyze the changes in the dynamic and equilibrium behavior of the system as the

proportion of adaptive learning agents increases, creating an endogenously evolving, non-

stationary environment. In many cases, the adaptive system as whole rapidly converges to

a fixed average or aggregate behavior despite the often slow and erratic convergence of the

individua_learning rules. But again, the details of the algorithm specification can lead to
x',

very diffei_ent global individual outcomes, especially in the short and medium term.

Reinforcement learning (RL) is a powerful technique studied extensively by computer

scientists that focuses on how agents learn from interacting with their environment rather

than by forming explicit models of the environment or by searching the policy space through

evolution and selection [20]. Agents formulate policies, or mappings from states to actions,

on the basis of the rewards associated with those state-action pairs in the past. Reinforce-

ment learning can readily accommodate uncertainty about the environment and delayed
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enviroamettts. Although RL techniques in computer science focus on learning through inter-

actions with the environment they are closely related to dynamic programming approaches

and other planning methods. We contrast the performance of the standard formulation of

an RL algorithm in the computer science literature with the performance of two simpler

reinforcement learning algorithms utilized by Roth and Er'ev ([17], [9]) which are loosely

based on the work of psychologists Bush and Mosteller [5].

The next section motivates and reviews the El Farol problem. The following section

states the three different RL algorithms. The fourth section uses simulations to illustrate

the behavior of the individual learning rules in isolation and of the larger complex adaptive

system. The final section concludes.

2 The E1 Farol Problem

El Farol is a bar in Santa Fe. The bar is popular, but becomes overcrowded when more

than sixty people attend on any given evening. Everyone enjoys themselves when fewer than

sixty people go, but no one has a good time when the bar is overcrowded. In the absence of

information about other people's choices how can, or how do, people choose whether to go

to El Farol?.

The El Farol problem is considered a canonical example of a complex adaptive system

[6]. Art_f. originally posed the El Farol problem to illustrate the aggregate dynamics of

a system c0thposed of bounded rational agents who rely on inductive learning. Agents at-

tempt to predict the aggregate behavior of other agents, which simultaneously depends on

all agents' predictions. Consequently, the interaction between individual learning strategies

and the environment that agents face plays a key role in determining the dynamics of the

system. In contrast to many game theoretic treatments of learning and coordination, the

level of congestion at El Farol depends on the actions of a relatively large number of indi-

vidual agents. It emphasizes the difficulty of coordinating the actions of independent agents
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att(l <'oordiuatiou problems that arise in large, rapidly evolving systems like the [nternet.

These features make El Farol a useful tool for analyzing information technology systems

which are characterized by decentralized decision making and rapid endogenous changes in

the operating environmentt., The El Farol problem has received a significant amount of

attention from physicists and computer scientists 2.

We consider the El Farol problem as a one-shot simultaneous move game 3. It is a multi-

player congestion game where the payoffs depend only on the number of agents choosing that

action. Congestion games were first characterized by Rosenthal [16]. Finding a Nash equilib-

rium of a congestion game is equivalent to a constrained minimization problem. Congestion

games are isomorphic to potential games [15].

Let all agents have identical payoffs: b is the payoff an agent receives for attending a

crowded bar and g is the payoff an agent receives for attending an uncrowded bar. With-

out loss of generality let h, the payoff received for staying home, be zero. (Some of the

algorithms considered below require weakly positive rewards.) Let M be the total [tum-

ber of agents and N" be the maximum capacity of an uncrowded bar. The game is then

G = [M, {Si},ui(si, s-i)] where Si consists of two strategies, stay home (indicated by 1)

and go to the bar (indicated by 2) with payoffs determined by ui(0, s_i) = 0 for all s-i,

lThe analogy between the El Farol problem and decentralized resource allocation is discussed by Green-
wald et. al. [12]. as well as in our previous work [2] [19]. Glance and Huberman [I 1] and Huberman and

Lukose [13] also consider the.dynamics of congestion on the Internet in a game theoretic framework.

_Johnsoj_ ffarvis, Jonson, Cheung, Kwong and Hui [14] consider how the variance in the El Farol problem
changes i/tl[_ponse to the number o-f predictors available in the entire system and the number of predictors
that each _Igents selects. Edmonds [8] expands Arthur's approach by endowing the agents with an evolving
set of predictors, and by allowing communication between agents {including the ability for agents to 'lie' to
each other). Zambrano [23] applies results from Bayesian game theory to show that a system composed of
Bayesian learners will converge to the set of Nash equilibria. Wolpert, Turner and Wheeler [21] and Wolpert
and Turner [22] consider a variant of the El Faroi scenario and design utility functions and learning algorithms
for individual agents that collectively optimize a global welfare function without centralized control. Challet
and Zhang [7] simplify the EL Farol problem by considering a 'minority game' in which receive positive payoffs
when they choose to join the smaller of two groups using strategies which consist of a table that maps the
outcome in a fixed number of previous periods to a choice of group next period. Savit, Manuca, Li and Riolo
[18] utilize the 'minority game' as a simple model of co-evolving adaptive systems.

3 Portions of this section describing the characteristics of the El Farol game follow the exposition in [2].



t_,(t,,__,)= .qwh,'Jt_ ....<_A" - I,and u,(l,__,)= b wh,,llZ,_, > A" - I.

In a deterministic setting where agents utilize only pure strategies a Nash equilibrium

occurs when exactly sixty agents choose to attend. There are (_o) such equilibria. There

are no symmetric pure strategy Nash equilibria. Pure strategy Nash equilibria are Pareto

efficient. Unlike the standard public good framework, in the El Farol scenario fully informed

optimizing agents will not increase consumption of a publicly available resource until it

experiences an inefficient level of congestion: if agents could predict the behavior of other

agents perfectly the bar would never be crowded and all patrons would have a good time 4.

Coordination failure, or agents' uncertainty about the action of other agents, may be an

important source of congestion in large decentralized systems [2].

Because the payoffs in the El Farol game contain a discontinuous response to increased

attendance, the analysis of equilibria depends crucially on how the agent accounts for his

or her own behavior. Each agents' mixed-strategy profile consists of a single parameter pi

which indicates the probability that agent i attends. Let M be the total number of agents,

N be the total observed attendance, N -i be the observed attendance exclusive of agent i

and A/" be the maximum capacity of an uncrowded bar.

A mixed-strategy equilibria must satisfy the condition:

, (N-'_<x-,) >J¢-,)--0
b (I)

or Pr ( N-' < A; -1) - b _ g

whic.h s_'es that the expected return to the pure strategy of attending the bar exactly

equals the expected return to the pure strategy of staying home. This must hold for all

agents simultaneously. Also note that the indifference condition that determines a mixed

strategy equilibrium depends on the distribution of total attendance which in general depends

on the probabilities of attendance for individual agents, not just on the mean of the entire

distribution.

4The stochastic or mixed-strategy framework may suffer from socially inefficient congestion as discussed

below.

4
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attea(l is :

Z /2)
N -' =0

For the case where M = 100 and A f = 60 this involves finding the roots of a 100th order

polynomial. For example, when g _ 2.02, b = 0, and g _ 1.02 the symmetric mixed-strategy

equilibrium is p = .6.

The symmetric mixed strategy Nash equilibrium is not Pareto optimal. Agents should

increase their probability of attending unless the expected return to attendance exactly

equals that of staying home. The randomness in agents' choice of strategy will generate

Pareto inefficient variance in attendance. Any attendance outcome that falls short of the

maximum capacity of an uncrowded bar can be Pareto improved by increasing attendance,

and vice versa. The Pareto efficient symmetric mixed-strategy profile s can be calculated by:

N=J_ N=M

max _ g N Pr(N) + _ b N Pr(N). (3)
P N=0 N=X+I

This p maximizes the total expected payoff to all agents which also maximizes the expected

return to individual agents. When g _ 2.02, b = 0, and g _ 1.02 as above the Pareto efficient

symmetric mixed-strategy profile is p _ .5. In this sense the El Farol problem suffers from

inefficient congestion similar to that observed in a standard public goods framework: each

individual agent's probability of attendance is just high enough that the expected return is

the same as"staying home.

Ther .._._e no asymmetric mixed strategy equilibria. Consider two agents with differing

probabilities of attendance and, without loss of generality, label them agents 1 and 2 with

pt < p_. The indifference condition (1) must hold for every agent, which implies that

Pr (N -t < A/" - 1) equal Pr (N -2 <_ A; - 1). The density function for attendance exclusive

of agent 1 can be expressed in terms of the density function for attendance exclusive of agents

SThe mixed-strategy profile that maximizes the expected return to each agent given the constraint that

the expected return be equal for all agents.

5
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Pr( :V -t = O) = Pr( N -l'-'J --- 0)(l - p.z)

Pr(N-' = x) = Pr(N -''-_ = x)(i -m)+ Pr( N-_'-2 = z - i) p_.

By expanding and combining sums the cumulative distribution that agent 1 faces can be

Pr( N-' < X) =

expressed as:

_=X-I

__, Pr(N -''-2 = z) + Pr(N -''-2 = X)(1 - P2).

The cumulative distribution function that agent 2 faces differs only by the term (l-p2) which

is replaced by (I -pl). Consequently, the indifference condition cannot hold simultaneously

for two agents with different probabilities of attendance.

3 Reinforcement Learning

In the simplest case there is a single learning agent who faces a stationary stochastic environ-

ment: all of the other agents choose to attend the bar with a fixed probability. The future

behavior of the system is exogenously determined and independent of the agent's actions.

The game reduces to a two-armed bandit problem in which one of the actions (staying home)

returns a fixed payoff and the other action (attending the bar) returns a payoff determined

by the realization of a multinomial random variable corresponding to the actions of the other

agents. In thissimple sdenario the agent's abilityto learn the correct action demonstrates

the effec_veness of the various learning rules.
.. ¢.

The situation becomes more complex when two agents are learning at the same time:

the environment isstilllargelyexogenous and stationary but the possibilitythat one agent's

actions willinfluencethe future actionsof the other agent isintroduced. As a largerfraction

of the agents simultaneously attempt to learn the value of the two possible actions the

environment becomes lessstationary,at leastinitially,and the future behavior of individual

agents and the entiresystem depends on the dynamic interactionof the learning rules.
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[20], At time t each learning agent i is specified by a vector of weights for the two actions:

w_ -= {wl, I, w2_}, and a vector which records the number of times that each action has been

taken: b I = {bl_,b21}. In a basic reinforcement learning algorithm for reward maximization

agent i chooses each action with probabilities:

pl_ -" and p21 = (4)

where Tt is a "temperature" parameter that declines slowly over time, making it more likely

that the action with the higher weight is chosen. The function determining Tt is:

Tt+, = Maz[tJ Tt, 7"] (s)

where _' is a parameter indicating the minimum temperature and /J, 0 < /_ < 1, is a

multiplicative stepsize. The initial value of To is a parameter that indicates the amount of

randomness in agents' choices early in the simulation. Whenever Tt = 0 the agent determin-

istically chooses the action with the higher weight.

The weights for an action are updated according to the following rules:

wli+,= wll+ II; Zl, (-wll + Tl,)

w21+,= _21+ r21Z2,(-_21 + r2,) (6)

where llli_and I2_ are indicator variables that equal one when the action is taken and zero

when" it Is: not, and rlt and r2, are the rewards at time t for taking actions 1 (staying

home) and 2 (going to the bar) respectively. The parameters 31t = _ and 32t = _ for

updating the weights correspond to averaging the payoff for that action over all observations.

Consequently, the weights change more slowly over time. In a non-station_y environment

it is more appropriate to have 31 and 32 constant to accommodate the changing rewards

for actions. The theoretical results from the literature and simulations demonstrate the

specification of 31 and 32 can affect the performance of the algorithm significantly. Note
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positive weights. We refer to the algorithm determined by (4), (5) aml (6) and the _ vector

as the CS algorithm.

The key free parameters are To, p and _'. The final temperature _' determines how much

experimentation the agents engage in in the long run but does not influence the algorithm

before that point. When T is zero agents eventually utilize a pure strategy. The initial

temperature and the stepsize play a crucial role in determining the speed of convergence:

a low initial temperature or one that decreases too quickly can lead to slow convergence

because the agents are unlikely to update the weights for initially less preferred actions; a

high initial temperature or one that decreases too slowly can lead agents to choose actions

without much regard to the average payoffs of those actions. The initial weights {wl_, w2_}

are also free parameters, but for reasonable initial values of To they have little effect on the

behavior of the system: the differences in weights are relatively unimportant when T is high,

and the initial weights are replaced with the reward received after the first time an action is

chosen.

Roth and Er'ev [17] and Er'ev and Roth [9] consider reinforcement learning rules inspired

by results in psychology. They also use a vector of weights for each action but the weights

are translated into probabilities by:

vl', = + w2i v2',= + w2i" (7)

They co_'der several different ways to update the the weights, two of which are considered

here. In t_e first case the rewards are added to the weights for each action:

= + ,'11,-I,

The weights are the total sum of rewards for each action. We refer to (7) and (8) along with

the initial conditions of the parameters as the REI learning rule s. The free Parameters axe

SThis is referred to as "the basic reinforcement model" in [9], p. 860. Because the minimum payoff is



the' two initial w_,ight._ {+el:j, w2_t, which determine tilt, irlitial probability and the scaling of

thc stepsize or thP extent to which the initial rewards received change the probability. The

magnitude of the rewards also affects the rate of change of the probabilities: the algorithm

is not independent of the units of measurement. Note that every time an action is taken it

is more likely to be taken in the future: high rewards received early in the simulation can

have a large affect on the future trajectory of the system. Roth and Er'ev address this by

including a "forgetting" parameter in the updating of the weights:

wli+L= (t - )wtl + rl,

(9)

where ¢ prevents the weights from growing without bound over time and puts a lower bound

on the change in the probability of taking an action for non-zero rewards. We refer to (9)

i 9 iand (7) and the initial parameters (wl 0, w.0} and ¢ as the RE2 rule r.

The next section demonstrates the behavior of these algorithms in the context ofthe El

Farol problem.

4 Simulation Results

4.1 A single learner in a stationary environment

The initial simulations explore the behavior of the different algorithm specifications when an

indiv[du_-!earner faces a stationary environment. The reward for attending an uncrowded

bar is ,_ 2.02, for staying home, _ 1.02, and for attending a crowded bar, 0. There are 30

agents, 29 of whom base their actions on independent realizations of a Bernoulli random

variable with probability of attending of .61. The expected payoff to attending the bar is

,_, 0.94. Consequently, the best response of the learning agent is to always stay home..

zero, hence the term they refer to as groin disappears.

7This rule is stated on p. 863 in [9] and on p. 175 in [17].
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lit'st period, this i+ .61) for all three algorithm specifications. Fbr the CS algorithm the initial

weights are Wo = {t.02, t.32} which leads to a 60% chance of attending when combined with

the initial temperature To = .75. The multiplicative factor used to lower the temperature

over time is/.+ = .9975 until the minimum temperature of 7' = .025 is reached. For the REI

and RE2 algorithms the initials weights are w0 = (.8, 1.2} and the forgetting parameter is

¢ = .001.

Figure 1 shows the probability of attendance for the learning agent for 50000 iterations

of all three algorithms. The same random numbers were used to determine the action taken

and the attendance of other agents in all three cases +. This suggests the long run behavior of

the algorithms. The top line in the figure is the RE1 algorithm, the middle line is RE2 and

the bottom line is CS. The CS algorithm rapidly trends down to and then fluctuates around

the probability of attendance associated with the correct estimate of the value of the two

actions and the minimum temperature of .025. The RE2 algorithm continues to decline over

time. The RE1 algorithm, although apparently stuck at a high probability of attendance,

also declines over time: the expected change in the probability of attendance is negative at

every time step 9.

Figure 2 is a close up of Figure 1 which shows the probability of attending for 5000

iterations. In this time frame the probability of attendance for the RE2 algorithm is slightly

SThe pseudo-random num.bergeneratorchoosesa reaJnumber between zeroand one. Ifthatnumber is
l>elowthe probabilityofattendingthentheoutcome ofthe Bernoullirandom variableisone (attend),zero
(stayhonl_-otherwise.Consequently,when the probabilitiesof attendingaresimilarthesame actionis
likelyto lJ_'.returned.The pseudo-random number generatoractsas an externalsignal:the differencesin
the behavibr"ofthe algorithmsarisesfrom differentresponsesto thesame signal.Also,therealizationsof
themu[ti-nomialrandom variabledeterminingtheattendanceofthenon-adaptiveagentsisthesame across

simulations.Thisprovidesa more accuratebasisforcomparisonoftheperformanceof thealgorithms.

_The differencebetween the probabilityof attendingat time tand theexpected valueof attendingat
time t4-l is:

w2 ((wl+ w2) (2w2 (wl -I-w2) + h (wl + 2w2)) +g ((wl+ w2) (Pwl + 2w2) + h (wl + Pwl 4-2w2)))

(wl + w2) _ (.++ wl + w2) (h + wl + w2)

which is always greater than zero but declines rapidly over time as wl and w2 increase. (P is the probability

that c - I other agents choose to attend.)

10
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t)oth t,tove in the wrong direction, increasing from the initial probability of attending of .60

to a maximum value of _ .80. Figure 2 demonstrates the behavior of algorithms in the

"intermediate term" that Roth and Er'ev loosely define as the time it takes for the learning

curve to become very fiat. Comparing the two figures shows the dimculties that arise in

identifying the intermediate term. The apparent stability of the RE2 algorithm's probability

of attendance disappears after the first 5000 iterations even though the stepsize (magnitude

of the change in probability) continues to decline over time.

One of the key ingredients in these (and all) adaptive algorithm is the "stepsize" or the

amount the probability of attending changes at each time step, which is influenced by several

parameters in these algorithms. Figures 3, 4 and 5 show the change in the probability of

attending over time for the three algorithms. Early in the simulations the magnitude of

the changes in the probability of attending are roughly equal in all three cases l°. The sum

of the absolute values of the change in probability over the first 25 iterations for the CS

algorithm is _ .036, for the RE algorithms, _ .037. After 500 iterations it is _..005 for

CS algorithm and _ .004 for the RE algorithms. (Much later in the simulation the stepsize

for the RE2 algorithm becomes larger than that of the RE1 algorithm.) The differences in

their behavior are not explained by differing stepsizes, instead, it results from the way the

algorithms incorporate the rewards: the CS algorithm decreases the likelihood of going to

the bar after a bad experience (the zero payoff is averaged into the weight for attending)

but doe_-ot change the likelihood of attending after staying home (the average of the fixed

reward doesn't change after the first few times the action is taken); in contrast, the RE

algorithms do not change the likelihood of attending after a bad experience (adding a zero

leaves the weight for attending unchanged) but decreases the likelihood of attending after

staying home (the positive payoff is added into the weight on staying home). The tendency

l°The first observation of _ .3 for the CS algorithm is not' shown on the graph in order to keep the scale

the same in the figures for all three algorithms.

II
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_tlgorit, hms away from the optimal action ia the short and meditml term.

The performance of the REI algorithm is more problematic than the previous figures

suggest: slight changes ia the initial conditions can dramatically alter the observed behavior.

Figure 6 shows two simulations of the RE1 algorithm with different initial conditions but

the same underlying sequence of random numbers as in figure 1. In the first case (upper

solid line) the initial weights are {.8, 1.0411} with an initial probability of attendance of

0.565477; the behavior is similar to that observed previously. In the second case (lower

cashed line) the initial weights are {.8, 1.04105} with an initial probability of attendance

of _ 0.565465; here the RE1 algorithm rapidly tends towards staying home, the optimal

action. The difference in the initial probabilities of attendance between the two cases is

0.0000118; the difference ia the probability of attending at time 10000 is _ 0.72. Figure 7

shows the first 50 iterations of figure 1. The divergence of the two simulations with different

initial conditions occurs in the first iterations: these continue to influence the adaptive agents

behavic.r over the entire course of the simulation.

Roth and Er'ev [17] do not consider the initial probability to be one of the free parameters

of their model: they set it to 50% in all cases. This assumption can play a crucial role in

the behavior of the learning rule. The one free parameter they consider is the scaling or

magnitude of the initial weights. Increasing the magnitude of the initial weight makes the

changes in probability smaller, especially in the first few time steps. Changing the size of

the initi_!f".weights in this example changes where the divergence in behavior occurs but does
" . ,/. t.

not qualitatively change the result: figure 8 shows two simulations with initial weights of

{8, 9} (upper solid line) and {8, 8.75} (dashed lower line). The larger initial weights slowed

the movement of both adaptive learners: the difference in the probability of attending at

time 10000 is _ 0.25. A similar situation arises with the RE2 algorithm: figure 9 shows

the trajectory of the probability of attendance starting from initial weights {.8, 1.05} (upper

solid line) and {.8, 1.04} (lower dashed |ine). Although the RE2 algorithm eventually declines

12
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'l'h(- previous discussion and figures refer to representativ(: .simulations. How often do

the RE algorithms tend away from the optimal action.'? An initial probability of attendance

of .60 tends to favor attending, so here we consider the case where the optimal action is to

attend. In Figure 10 the dotted lines show the data for one learner using the CS algorithm,

the dashed grey lines show the data for the RE1 algorithm and the solid black lines for

the RE2 algorithm. The solid line at .80 show the starting point for all the simulations.

In all cases the probability of attendance for the other non-adaptive agents is below .80,

so the optimal action for the learning agent is to always attend the bar. Figure 10 shows

the data for different fixed probabilities of attendance of other agents. The lowest dotted

line gives the probability of attendance at iteration `5000 for 100 different runs of the CS

algorithm, with the outcomes ordered from lowest to highest. There are twenty-nine other

agents with probability of attendance of .,59. The next dotted line gives the same data when

the probability of attendance for the other agents is .,58, and so on though .,5,5. The two

highest lines, although not readily distinguished for the CS algorithm, sho_ the data for .4,5

and .3,5. The lowest dashed grey line gives the results for the RE1 algorithm and the solid

black line gives the results for the RE2 algorithm. When the probability of attendance is

below .80 the process of learning led the agent to favor the action with the lower reward in

the first ,5000 iterations. For example, despite an initial condition that favored attending the

RE1 algoriehm moved away from the optimal action in about 35% of the simulations. The

RE2 .alg(l_hm with "forgetting" performs better than the RE1 algorithm, but is still much
w ",I). '° .

less likely to take the correct action by time ,5000 compared to the CS algorithm. For all

three algorithms the lower the probability of attendance for the other agents, the higher the

reward for attending the bar and the easier it is to discern the correct action.

13



4.2 Complex adaptive systems with multiple learners

When the number of adaptive agents increases, the external environment is not stationary

and the actions of the adaptive agents interact over time. Again, the behavior of individual

agents and of the system as a whole can differ dramatically depending on the initial conditions

of the simulation. In some cases, the most notable feature of the majority of simulations is

the rapid convergence of average attendance to .60, despite the relatively slow convergence

of the individual adaptive agents. The learning rules considered here are much simpler

specifications than the inductive learning approach that Arthur [1] utilized, but the generic

behavior is remarkably similar. However, there are also cases where the interaction of the

adaptive agents can lead to poor individual and system-wide performance.

Figures 11, 13 and 15 show 25000 iterations of the three algorithms with 15 learning agents

and 15 agents who base their actions on independent realizations of a Bernoulli random

variable with probability of attending of .75. (Figures 12, 14 and 16 are close-ups of figures 11,

13 and 15, respectively.) All of the other initial conditions are the same as the first example.

']:'he grey lines are the trajectories of the probability of attendance for the adaptive agents; the

black line is the average probability of attendance for all agents including those with a fixed

probability of attendance. The behavior of the individual algorithms is qualitatively similar

to the case of a single adaptive agent, with the CS and RE2 algorithms converging towards

a pure strategy and the RE1 algorithm rapidly approaching a relatively fixed probability

of attending. The initi'al aggregate probability of attendance is .675. Mean attendance

approac_ 00% within 10 iterations for all algorithms and the variance of attendance declines

over time, at least for the CS and RE2 algorithms. The greater variability of the CS algorithm

leads to a greater variation of average attendance. The endogeneity of the environment also

tends to slow down the convergence of the individual learners.

Table 1 summarizes the relationships between the average probability of attendance and

the algorithm specifications when all agents are adaptive. Assuming approximately equal

stepsizes or changes in probability across agents and across algorithms the largest change in

14



Table 1: Change in Average Probability of Attendance

learning rule

CS

net effect

RE1

net effect

RE2

net effect

bar is uncrowded

N < A/agents increase proba-

bility of attendance

M- N > A/" agents leave proba-

bility of attendance unchanged,

if action of staying home has

been taken several times

increases

N < A/" agents increase proba-

bility of attendance

M- N > N" agents decrease

probability of attendance

indeterminate

N < A/" agents increase proba-

bility of attendance

M- N > N" agents decrease

probability of attendance

indeterminate

bar is crowded

N > A/agents decrease proba-

bility of attendance

M - N < N" leave probability

of attendance unchanged, if ac-

tion of staying home has been

taken several times

decreases

N > .N" agents leave probability

of attendance unchanged

M - N < N" decrease probabil-

ity of attendance

decreases
T

N < N" agents decrease proba-

bility of attendance

M - N < Af decrease probabil-

ity of attendance

decreases

15



th,' _tv,_r_tg,. Pr_l,,dfilitv is likely to o,'c,lr when the bar is cr_)wd_'_l bar a._l when CS agents

attend an uncrowded bar. ["or the RE algorithms both actions are reinforced simultane-

ously when the bar is uncrowded. This suggests that there may be asymmetries between

simulations which start with average attendance above and below .60°/8. The RE algorithms

tend to be somewhat slower to converge (100-150 iterations) to an average probability of

.60% when the initial probabilities of attendance are lower, but otherwise exhibit the same

smooth aggregate behavior. The CS algorithm, on the other hand, performs poorly in an

endogenous environment.

Figure 17 shows `5000 iterations of the CS algorithm with 1,5 learning agents and 1,5

agents who base their actions on independent realizations of a Bernoulli random variable

with probability of attending of .4,5. The CS learners rapidly increase their probability of

attendance until all 1,5 agents attend every period, the bar is crowded 9(5% of the time.

Nonetheless it takes hundreds of iterations for the individual learners to begin to respond to

the new environment. The scheme for averaging the rewards into weights is well adapted to

a stationary environment but is slow to respond to new external conditions.

When all agents are adaptive the generic behavior of the RE algorithms is relatively

rapid convergence of the aggregate probability of attendance despite the slow movement

of individual agents' probabilities. The CS algorithm often rapidly overshoots aggregate

attendance of .60%, for initial conditions above and below .60

Figures'20, 21 and 22 show the state of average attendance (largedots) and of :30indi-

vidu M a_. ptive agents (small dots) after5000 iterations.There were 2,5separate simula-

tions. The initialprobabilityof attendance was again .60 for allagents. Consequently, these

simulations are initializedat the symmetric mixed strategy Nash equilibrium. The mixed

strategy equilibrium isfragile:the probabilityof attendance of individual adaptive agents

rapidly moves away from .60. Note that the CS algorithm (figure20) has recovered from its

tendency to overshoot by iteration5000 in these examples.

16



5 Conclusion

This paper examines the performance of simple learning rules in a complex adaptive system

based on a coordination problem modeled on the El Farol problem. The key features of the

El Farol problem are that it typically involves a medium number of agents and that agents'

payoff functions have a discontinuous response to increased congestion. First we consider

a single adaptive agent facing a stationary environment. We demonstrate that the simple

learning rules proposed by Roth and Er'ev [17] and Er'ev and Roth [9] can be extremely

sensitive to small changes in the initial conditions and that events early in a simulation

can affect the performance of the rule over a relatively long time horizon. In contrast, a

reinforcement learning rule based on standard practice in the computer science literature

converges rapidly and robustly. The situation is reversed when multiple adaptive agents

interact: the RE algorithms often converge rapidly to a stable average aggregate attendance

despite the slow and erratic behavior of individual learners, while the CS based learners

frequently over-attend in the early and intermediate terms. The symmetric mixed strategy

equilibria is unstable: all three learning rules ultimately tend towards pure strategies or

stabilize in the medium term at non-equilibrium probabilities of attendance. The brittleness

of the algorithms in different contexts emphasize the importance of thorough and thoughtful

examination of simulation-based results.

¢
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Figure 1: Probability of attendance for one adaptive agent using the CS (bottom line),
RE1 (top line) and RE2 (middle line) algorithms. The fixed probability of attendance for

non-adaptive agents is .61. The optimal action is to stay home every period.
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Figure 2: Probability of attendance for one adaptive agent using the CS, RE! and RE2
algorithms. First 5000 iterations of figure 1.
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Figure 3: Change in probability of attending for the CS algorithm. First 1000 iterations of
figure 1.
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Figure 4: Change in probability of attending for the RE1 algorithm. First 1000 iterations of
figure 1.
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Figure 5: Change in probability of attending for the RE2 algorithm. First 1000 iterations of
figure 1.
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Figure 6: Probability of attendance for an adaptive agent using the RE1 algorithm with

initial weights of {.8, 1.0411} (upper solid line) and initial weights of {.8, 1.04105} (lower

dashed line). The fixed probability of attendance for non-adaptive agents is .61. The optimal
action is to stay home every period.
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Figure 7: Probability of attendance for an adaptive agent using the RE1 algorithm with

initial weights of {.8, 1.0411} (upper solid line) and initial weights of {.8, 1.04105} (lower

dashed line). First 50 iterations of figure 6.
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Figure 8: Probability of attendance for an adaptive agent using the RE1 algorithm with

initial weights of {8, 9} (upper solid line) and initial weights of (8, 8.75} (lower dashed line).
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Figure 9: Probability of attendance for an adaptive agent using the RE2 algorithm with

initial weights of {.8, 1.05} (upper solid line) and initial weights of {.8, 1.04} (lower dashed

line). The fixed probability of attendance for non-adaptive agents is .61. The optimal action

is to stay home every period.
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Figure 10: Probability of attendance for one adaptive agent using the CS (dotted line),

REl(dashed line) and RE2 (solid line) algorithms with 29 non-adaptive agents. Each line rep-

resents 100 simulations with differing fixed probabilities of attendance for the non-adaptive
agents, ranging from .59 to .35.
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Figure 11: Probability of attendance for 15 adaptive agents (grey lines) using the CS algo-

rithm with 15 non-adaptive agents with probability of attendance of.75. Average probability
of attendance for all agents is shown by the solid black line.
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Figure 12: Probability of attendance for 15 adaptive agents (grey lines) using the CS algo-
rithm with 15 non-adaptive agents with probability of attendance of .75. First 5000 iterations
of figure 11.
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Figure 13: Probability of attendance for 15 adaptive agents (grey lines) using the RE1 algo-

rithm with 15 non-adaptive agents with probability of attendance of.75. Average probability
of attendance for all agents is shown by the solid black line.
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Figure 14: Probability of attendance for 15 adaptive agents (grey lines) using the RE1
algorithm with 15 non-adaptive agents with probability of attendance of .75. First 5000
iterations of figure 13.
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Figure 15: Probability of attendance for 15 adaptive agents (grey lines) using the RE2 algo-

rithm with 15 non-adaptive agents with probability of attendance of.75. Average probability
of attendance for all agents is shown by the solid black line.
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Figure 16: Probability of attendance for 15 adaptive agents (grey lines) using the RE1
algorithm with 18 non-adaptive agents with probability of attendance of .75. First 5000
iterations of figure 18.
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Figure 17: Probability of attendance for 15 adaptive agents (grey lines) using the CS algo-

rithm with 15 non-adaptive agents with probability of attendance of .45. Average probability
of attendance for all agents is shown by the solid black line.
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Figure 18: Probability of attendance for 30 adaptive agents (grey lines) using the CS algo-

rithm with initial probability of attendance of .60. Average probability of attendance for all
agents is shown by the solid black line.
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Figure 22: Probability of attendance for 30 adaptive agents (small dots) using the RE2

algorithm..Average probabilityof attendance for allagents isshown by the large dots. Each

_;erticalcolumn of dots l)resentsthe data from one simulation.
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